Nuprl Lemma : vs-lift-append
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[fs,fs':bag(|K| × S)].
  (vs-lift(vs;f;fs + fs') = vs-lift(vs;f;fs) + vs-lift(vs;f;fs') ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-lift: vs-lift(vs;f;fs)
, 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_car: |r|
, 
bag-append: as + bs
, 
bag: bag(T)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
vs-lift: vs-lift(vs;f;fs)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
vs-point_wf, 
bag_wf, 
vs-mul_wf, 
rng_car_wf, 
vs-bag-add-append
Rules used in proof : 
dependent_functionElimination, 
universeEquality, 
functionEquality, 
axiomEquality, 
isect_memberEquality, 
functionExtensionality, 
applyEquality, 
independent_pairEquality, 
productElimination, 
spreadEquality, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
productEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[fs,fs':bag(|K|  \mtimes{}  S)].
    (vs-lift(vs;f;fs  +  fs')  =  vs-lift(vs;f;fs)  +  vs-lift(vs;f;fs'))
Date html generated:
2018_05_22-PM-09_44_47
Last ObjectModification:
2018_01_09-AM-11_00_48
Theory : linear!algebra
Home
Index