Nuprl Lemma : vs-lift-append

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[fs,fs':bag(|K| × S)].
  (vs-lift(vs;f;fs fs') vs-lift(vs;f;fs) vs-lift(vs;f;fs') ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-lift: vs-lift(vs;f;fs) vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T rng: Rng rng_car: |r| bag-append: as bs bag: bag(T)
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng vs-lift: vs-lift(vs;f;fs) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-point_wf bag_wf vs-mul_wf rng_car_wf vs-bag-add-append
Rules used in proof :  dependent_functionElimination universeEquality functionEquality axiomEquality isect_memberEquality functionExtensionality applyEquality independent_pairEquality productElimination spreadEquality lambdaEquality sqequalRule cumulativity hypothesis because_Cache rename setElimination productEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[fs,fs':bag(|K|  \mtimes{}  S)].
    (vs-lift(vs;f;fs  +  fs')  =  vs-lift(vs;f;fs)  +  vs-lift(vs;f;fs'))



Date html generated: 2018_05_22-PM-09_44_47
Last ObjectModification: 2018_01_09-AM-11_00_48

Theory : linear!algebra


Home Index