Nuprl Lemma : vs-bag-add-append
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[bs,cs:bag(S)].
  (Σ{f[b] | b ∈ bs + cs} = Σ{f[b] | b ∈ bs} + Σ{f[b] | b ∈ cs} ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
bag-append: as + bs
, 
bag: bag(T)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
comm: Comm(T;op)
, 
ident: Ident(T;op;id)
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
infix_ap: x f y
, 
assoc: Assoc(T;op)
, 
monoid_p: IsMonoid(T;op;id)
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rng: Rng
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
bag_wf, 
vs-add-comm, 
vs-mon_ident, 
iff_weakening_equal, 
vs-mon_assoc, 
true_wf, 
squash_wf, 
equal_wf, 
vs-0_wf, 
vs-add_wf, 
vs-point_wf, 
bag-summation-append
Rules used in proof : 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
sqequalRule, 
independent_pairFormation, 
independent_isectElimination, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[bs,cs:bag(S)].
    (\mSigma{}\{f[b]  |  b  \mmember{}  bs  +  cs\}  =  \mSigma{}\{f[b]  |  b  \mmember{}  bs\}  +  \mSigma{}\{f[b]  |  b  \mmember{}  cs\})
Date html generated:
2018_05_22-PM-09_41_30
Last ObjectModification:
2018_01_09-PM-01_03_58
Theory : linear!algebra
Home
Index