Nuprl Lemma : vs-map-image-is-subspace

[K:Rng]. ∀A:VectorSpace(K). ∀[B:VectorSpace(K)]. ∀[f:A ⟶ B].  vs-subspace(K;B;b.b ∈ Img(f))


Proof




Definitions occuring in Statement :  vs-map-image: b ∈ Img(f) vs-map: A ⟶ B vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) uall: [x:A]. B[x] all: x:A. B[x] rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] vs-map-image: b ∈ Img(f) vs-subspace: vs-subspace(K;vs;x.P[x]) and: P ∧ Q cand: c∧ B implies:  Q exists: x:A. B[x] member: t ∈ T rng: Rng vs-map: A ⟶ B squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  vs-point_wf rng_car_wf vs-map_wf vector-space_wf rng_wf vs-0_wf vs-map-0 rng_properties vs-add_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal rng_sig_wf vs-mul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalRule cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin productIsType universeIsType introduction extract_by_obid isectElimination setElimination rename because_Cache hypothesisEquality equalityIstype inhabitedIsType applyEquality dependent_functionElimination dependent_pairFormation_alt lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}A:VectorSpace(K).  \mforall{}[B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].    vs-subspace(K;B;b.b  \mmember{}  Img(f))



Date html generated: 2019_10_31-AM-06_27_24
Last ObjectModification: 2019_08_12-PM-01_12_04

Theory : linear!algebra


Home Index