Nuprl Lemma : pscm-type-ap_wf
∀[C:SmallCategory]. ∀[Gamma,Delta:ps_context{j:l}(C)]. ∀[s:psc_map{j:l}(C; Delta; Gamma)]. ∀[A:{Gamma ⊢ _}].
  (pscm-type-ap(A;s) ∈ Delta ⊢ )
Proof
Definitions occuring in Statement : 
pscm-type-ap: pscm-type-ap(A;s)
, 
presheaf-type: {X ⊢ _}
, 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pscm-type-ap: pscm-type-ap(A;s)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
pscm-ap-type_wf, 
presheaf-type_wf, 
psc_map_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma,Delta:ps\_context\{j:l\}(C)].  \mforall{}[s:psc\_map\{j:l\}(C;  Delta;  Gamma)].
\mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    (pscm-type-ap(A;s)  \mmember{}  Delta  \mvdash{}  )
Date html generated:
2020_05_20-PM-01_26_14
Last ObjectModification:
2020_04_01-AM-11_50_54
Theory : presheaf!models!of!type!theory
Home
Index