Nuprl Lemma : pscm-type-ap_wf

[C:SmallCategory]. ∀[Gamma,Delta:ps_context{j:l}(C)]. ∀[s:psc_map{j:l}(C; Delta; Gamma)]. ∀[A:{Gamma ⊢ _}].
  (pscm-type-ap(A;s) ∈ Delta ⊢ )


Proof




Definitions occuring in Statement :  pscm-type-ap: pscm-type-ap(A;s) presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pscm-type-ap: pscm-type-ap(A;s) subtype_rel: A ⊆B
Lemmas referenced :  pscm-ap-type_wf presheaf-type_wf psc_map_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma,Delta:ps\_context\{j:l\}(C)].  \mforall{}[s:psc\_map\{j:l\}(C;  Delta;  Gamma)].
\mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    (pscm-type-ap(A;s)  \mmember{}  Delta  \mvdash{}  )



Date html generated: 2020_05_20-PM-01_26_14
Last ObjectModification: 2020_04_01-AM-11_50_54

Theory : presheaf!models!of!type!theory


Home Index