Nuprl Lemma : sub_ps_context_transitivity

[C:SmallCategory]. ∀[X,Y,Z:ps_context{j:l}(C)].
  sub_ps_context{j:l}(C; Z; X) supposing sub_ps_context{j:l}(C; Z; Y) ∧ sub_ps_context{j:l}(C; Y; X)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q sub_ps_context: Y ⊆ X subtype_rel: A ⊆B guard: {T} psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] cat-comp: cat-comp(C) compose: g pscm-id: 1(X) pscm-comp: F
Lemmas referenced :  pscm-comp_wf small-category-cumulativity-2 ps_context_cumulativity2 subtype_rel_self psc_map_wf sub_ps_context_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin instantiate extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache equalityTransitivity equalitySymmetry axiomEquality productIsType universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y,Z:ps\_context\{j:l\}(C)].
    sub\_ps\_context\{j:l\}(C;  Z;  X)  supposing  sub\_ps\_context\{j:l\}(C;  Z;  Y)  \mwedge{}  sub\_ps\_context\{j:l\}(C;  Y;  X)



Date html generated: 2020_05_20-PM-01_24_43
Last ObjectModification: 2020_04_01-AM-11_00_41

Theory : presheaf!models!of!type!theory


Home Index