Nuprl Lemma : continuous-sub

[I:Interval]. ∀[f,g:I ⟶ℝ].
  (f[x] continuous for x ∈  g[x] continuous for x ∈  f[x] g[x] continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rsub: y uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  rsub: y uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] prop: label: ...$L... t
Lemmas referenced :  continuous-add real_wf i-member_wf rminus_wf continuous-minus continuous_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality setEquality hypothesis because_Cache independent_functionElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  -  g[x]  continuous  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_11_47
Last ObjectModification: 2015_12_27-PM-11_28_17

Theory : reals


Home Index