Nuprl Lemma : continuous-sub
∀[I:Interval]. ∀[f,g:I ⟶ℝ].
  (f[x] continuous for x ∈ I 
⇒ g[x] continuous for x ∈ I 
⇒ f[x] - g[x] continuous for x ∈ I)
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
rsub: x - y
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
rsub: x - y
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
prop: ℙ
, 
label: ...$L... t
Lemmas referenced : 
continuous-add, 
real_wf, 
i-member_wf, 
rminus_wf, 
continuous-minus, 
continuous_wf, 
rfun_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setEquality, 
hypothesis, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  -  g[x]  continuous  for  x  \mmember{}  I)
Date html generated:
2016_05_18-AM-09_11_47
Last ObjectModification:
2015_12_27-PM-11_28_17
Theory : reals
Home
Index