Nuprl Lemma : homeomorphic+_wf
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].  (homeomorphic+(X;dX;Y;dY) ∈ ℙ)
Proof
Definitions occuring in Statement : 
homeomorphic+: homeomorphic+(X;dX;Y;dY)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
homeomorphic+: homeomorphic+(X;dX;Y;dY)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
mfun: FUN(X ⟶ Y)
, 
nat_plus: ℕ+
Lemmas referenced : 
mfun_wf, 
meq_wf, 
nat_plus_wf, 
rleq_wf, 
mdist_wf, 
rmul_wf, 
int-to-real_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].    (homeomorphic+(X;dX;Y;dY)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_24_52
Last ObjectModification:
2019_10_02-AM-10_00_21
Theory : reals
Home
Index