Nuprl Lemma : mdiverges_wf
∀[X:Type]. ∀[d:X ⟶ X ⟶ ℝ]. ∀[x:ℕ ⟶ X].  (n.x[n]↑ ∈ ℙ)
Proof
Definitions occuring in Statement : 
mdiverges: n.x[n]↑, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
mdiverges: n.x[n]↑, 
mdist: mdist(d;x;y), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
nat: ℕ, 
so_apply: x[s]
Lemmas referenced : 
real_wf, 
rless_wf, 
int-to-real_wf, 
nat_wf, 
le_wf, 
rleq_wf, 
istype-nat, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
productEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbN{}  {}\mrightarrow{}  X].    (n.x[n]\muparrow{}  \mmember{}  \mBbbP{})
 Date html generated: 
2019_10_30-AM-06_41_29
 Last ObjectModification: 
2019_10_02-AM-10_54_09
Theory : reals
Home
Index