Nuprl Lemma : meq_functionality
∀[X:Type]. ∀[d:metric(X)]. ∀[x1,x2,y1,y2:X].  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)
Proof
Definitions occuring in Statement : 
meq: x ≡ y
, 
metric: metric(X)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
meq: x ≡ y
, 
metric: metric(X)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
sym: Sym(T;x,y.E[x; y])
Lemmas referenced : 
meq-equiv, 
req_witness, 
int-to-real_wf, 
meq_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
sqequalRule, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
independent_pairEquality, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x1,x2,y1,y2:X].
    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)
Date html generated:
2019_10_29-AM-10_56_35
Last ObjectModification:
2019_10_02-AM-09_37_46
Theory : reals
Home
Index