Nuprl Lemma : mfun-class_wf
∀[X:Type]. ∀[dx:metric(X)]. ∀[Y:Type]. ∀[dy:metric(Y)].  (mfun-class(X;dx;Y;dy) ∈ Type)
Proof
Definitions occuring in Statement : 
mfun-class: mfun-class(X;dx;Y;dy)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mfun-class: mfun-class(X;dx;Y;dy)
, 
so_lambda: λ2x y.t[x; y]
, 
mfun: FUN(X ⟶ Y)
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
quotient_wf, 
mfun_wf, 
meqfun_wf, 
meqfun-equiv-rel-mfun, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
because_Cache, 
setElimination, 
rename, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[dx:metric(X)].  \mforall{}[Y:Type].  \mforall{}[dy:metric(Y)].    (mfun-class(X;dx;Y;dy)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-06_33_07
Last ObjectModification:
2019_10_02-AM-10_06_53
Theory : reals
Home
Index