Nuprl Lemma : mk-rset_wf
∀[P:ℝ ⟶ ℙ]. {x:ℝ | P[x]} ∈ Set(ℝ) supposing ∀x,y:ℝ.  ((x = y) 
⇒ P[x] 
⇒ P[y])
Proof
Definitions occuring in Statement : 
mk-rset: {x:ℝ | P[x]}
, 
rset: Set(ℝ)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rset: Set(ℝ)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mk-rset: {x:ℝ | P[x]}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
all_wf, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  \{x:\mBbbR{}  |  P[x]\}  \mmember{}  Set(\mBbbR{})  supposing  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])
Date html generated:
2016_05_18-AM-08_08_21
Last ObjectModification:
2015_12_28-AM-01_14_47
Theory : reals
Home
Index