Nuprl Lemma : mk-rset_wf

[P:ℝ ⟶ ℙ]. {x:ℝ P[x]} ∈ Set(ℝsupposing ∀x,y:ℝ.  ((x y)  P[x]  P[y])


Proof




Definitions occuring in Statement :  mk-rset: {x:ℝ P[x]} rset: Set(ℝ) req: y real: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  rset: Set(ℝ) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mk-rset: {x:ℝ P[x]} so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q prop: all: x:A. B[x]
Lemmas referenced :  real_wf all_wf req_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality lambdaEquality applyEquality hypothesisEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[P:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  \{x:\mBbbR{}  |  P[x]\}  \mmember{}  Set(\mBbbR{})  supposing  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])



Date html generated: 2016_05_18-AM-08_08_21
Last ObjectModification: 2015_12_28-AM-01_14_47

Theory : reals


Home Index