Nuprl Lemma : prod-metric-space_wf
∀[k:ℕ]. ∀[X:ℕk ⟶ MetricSpace].  (prod-metric-space(k;X) ∈ MetricSpace)
Proof
Definitions occuring in Statement : 
prod-metric-space: prod-metric-space(k;X)
, 
metric-space: MetricSpace
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prod-metric-space: prod-metric-space(k;X)
, 
metric-space: MetricSpace
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
Lemmas referenced : 
int_seg_wf, 
prod-metric_wf, 
metric_wf, 
metric-space_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_pairEquality_alt, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality_alt, 
universeIsType, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}k  {}\mrightarrow{}  MetricSpace].    (prod-metric-space(k;X)  \mmember{}  MetricSpace)
Date html generated:
2019_10_29-AM-11_11_35
Last ObjectModification:
2019_10_02-AM-09_52_10
Theory : reals
Home
Index