Nuprl Lemma : prod-metric_wf
∀[k:ℕ]. ∀[X:ℕk ⟶ Type]. ∀[d:i:ℕk ⟶ metric(X[i])].  (prod-metric(k;d) ∈ metric(i:ℕk ⟶ X[i]))
Proof
Definitions occuring in Statement : 
prod-metric: prod-metric(k;d)
, 
metric: metric(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
prod-metric: prod-metric(k;d)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric: metric(X)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rsum_wf, 
subtract_wf, 
mdist_wf, 
subtract-add-cancel, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
int_seg_wf, 
rsum-of-nonneg-zero-iff, 
mdist-nonneg, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
itermAdd_wf, 
itermSubtract_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
mdist-same, 
rleq_wf, 
radd_wf, 
req_wf, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
istype-nat, 
rsum_functionality_wrt_rleq, 
mdist-triangle-inequality1, 
rleq_functionality, 
req_weakening, 
req_inversion, 
rsum_linearity1
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
productIsType, 
addEquality, 
inhabitedIsType, 
functionIsType, 
lambdaFormation_alt, 
imageElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}k  {}\mrightarrow{}  Type].  \mforall{}[d:i:\mBbbN{}k  {}\mrightarrow{}  metric(X[i])].    (prod-metric(k;d)  \mmember{}  metric(i:\mBbbN{}k  {}\mrightarrow{}  X[i]))
Date html generated:
2019_10_29-AM-11_09_34
Last ObjectModification:
2019_10_02-AM-09_50_39
Theory : reals
Home
Index