Nuprl Lemma : prod-metric_wf

[k:ℕ]. ∀[X:ℕk ⟶ Type]. ∀[d:i:ℕk ⟶ metric(X[i])].  (prod-metric(k;d) ∈ metric(i:ℕk ⟶ X[i]))


Proof




Definitions occuring in Statement :  prod-metric: prod-metric(k;d) metric: metric(X) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  prod-metric: prod-metric(k;d) uall: [x:A]. B[x] member: t ∈ T metric: metric(X) nat: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: cand: c∧ B le: A ≤ B less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rsum_wf subtract_wf mdist_wf subtract-add-cancel nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than int_seg_wf rsum-of-nonneg-zero-iff mdist-nonneg int_seg_properties decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma mdist-same rleq_wf radd_wf req_wf int-to-real_wf metric_wf istype-universe istype-nat rsum_functionality_wrt_rleq mdist-triangle-inequality1 rleq_functionality req_weakening req_inversion rsum_linearity1
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis applyEquality hypothesisEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType addEquality inhabitedIsType functionIsType lambdaFormation_alt imageElimination axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}k  {}\mrightarrow{}  Type].  \mforall{}[d:i:\mBbbN{}k  {}\mrightarrow{}  metric(X[i])].    (prod-metric(k;d)  \mmember{}  metric(i:\mBbbN{}k  {}\mrightarrow{}  X[i]))



Date html generated: 2019_10_29-AM-11_09_34
Last ObjectModification: 2019_10_02-AM-09_50_39

Theory : reals


Home Index