Nuprl Lemma : rsum-of-nonneg-zero-iff
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].
  uiff(Σ{x[i] | n≤i≤m} = r0;∀i:{n..m + 1-}. (x[i] = r0)) supposing ∀i:{n..m + 1-}. (r0 ≤ x[i])
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
not: ¬A
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
guard: {T}
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
req_witness, 
int-to-real_wf, 
req_wf, 
rsum_wf, 
rleq_wf, 
real_wf, 
istype-int, 
req-iff-not-rneq, 
rneq_wf, 
rless_transitivity1, 
rless_irreflexivity, 
rsum-of-nonneg-positive-iff, 
rless_wf, 
rleq_weakening, 
rsum-zero-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
functionIsType, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_isectElimination, 
unionElimination, 
voidElimination, 
dependent_pairFormation_alt
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    uiff(\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  r0;\mforall{}i:\{n..m  +  1\msupminus{}\}.  (x[i]  =  r0))  supposing  \mforall{}i:\{n..m  +  1\msupminus{}\}.  (r0  \mleq{}  x[i])
Date html generated:
2019_10_29-AM-10_12_37
Last ObjectModification:
2019_10_10-PM-10_00_27
Theory : reals
Home
Index