Nuprl Lemma : rsum-of-nonneg-zero-iff

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].
  uiff(Σ{x[i] n≤i≤m} r0;∀i:{n..m 1-}. (x[i] r0)) supposing ∀i:{n..m 1-}. (r0 ≤ x[i])


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y req: y int-to-real: r(n) real: int_seg: {i..j-} uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] prop: not: ¬A rneq: x ≠ y or: P ∨ Q guard: {T} false: False iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x]
Lemmas referenced :  int_seg_wf req_witness int-to-real_wf req_wf rsum_wf rleq_wf real_wf istype-int req-iff-not-rneq rneq_wf rless_transitivity1 rless_irreflexivity rsum-of-nonneg-positive-iff rless_wf rleq_weakening rsum-zero-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality natural_numberEquality hypothesis sqequalRule lambdaEquality_alt dependent_functionElimination applyEquality independent_functionElimination functionIsTypeImplies inhabitedIsType because_Cache functionIsType productElimination independent_pairEquality isect_memberEquality_alt isectIsTypeImplies independent_isectElimination unionElimination voidElimination dependent_pairFormation_alt

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    uiff(\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  r0;\mforall{}i:\{n..m  +  1\msupminus{}\}.  (x[i]  =  r0))  supposing  \mforall{}i:\{n..m  +  1\msupminus{}\}.  (r0  \mleq{}  x[i])



Date html generated: 2019_10_29-AM-10_12_37
Last ObjectModification: 2019_10_10-PM-10_00_27

Theory : reals


Home Index