Nuprl Lemma : rsum-of-nonneg-positive-iff

n,m:ℤ. ∀x:{n..m 1-} ⟶ ℝ.  ((∀i:{n..m 1-}. (r0 ≤ x[i]))  (r0 < Σ{x[i] n≤i≤m} ⇐⇒ ∃i:{n..m 1-}. (r0 < x[i])))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rless: x < y int-to-real: r(n) real: int_seg: {i..j-} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] guard: {T} uimplies: supposing a int_seg: {i..j-} rless: x < y sq_exists: x:{A| B[x]} subtype_rel: A ⊆B real: sq_stable: SqStable(P) squash: T nat_plus: + lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rge: x ≥ y uiff: uiff(P;Q)
Lemmas referenced :  rless_wf int-to-real_wf rsum_wf int_seg_wf exists_wf all_wf rleq_wf real_wf rsum-positive-implies rabs_wf rless_functionality req_weakening rabs-of-nonneg sq_stable__less_than nat_plus_properties int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma radd_wf decidable__lt lelt_wf rsum-split rsum_nonneg le_wf rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq subtract_wf subtract-add-cancel radd_functionality rsum-split-last trivial-rless-radd itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality addEquality functionEquality intEquality dependent_functionElimination independent_functionElimination productElimination dependent_pairFormation because_Cache independent_isectElimination setElimination rename imageMemberEquality baseClosed imageElimination unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}i:\{n..m  +  1\msupminus{}\}.  (r0  \mleq{}  x[i]))  {}\mRightarrow{}  (r0  <  \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\{n..m  +  1\msupminus{}\}.  (r0  <  x[i])))



Date html generated: 2016_10_26-AM-09_17_28
Last ObjectModification: 2016_09_28-PM-06_09_00

Theory : reals


Home Index