Nuprl Lemma : rsum-of-nonneg-positive-iff
∀n,m:ℤ. ∀x:{n..m + 1-} ⟶ ℝ.  ((∀i:{n..m + 1-}. (r0 ≤ x[i])) 
⇒ (r0 < Σ{x[i] | n≤i≤m} 
⇐⇒ ∃i:{n..m + 1-}. (r0 < x[i])))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
rge: x ≥ y
, 
uiff: uiff(P;Q)
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
rsum_wf, 
int_seg_wf, 
exists_wf, 
all_wf, 
rleq_wf, 
real_wf, 
rsum-positive-implies, 
rabs_wf, 
rless_functionality, 
req_weakening, 
rabs-of-nonneg, 
sq_stable__less_than, 
nat_plus_properties, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
radd_wf, 
decidable__lt, 
lelt_wf, 
rsum-split, 
rsum_nonneg, 
le_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
subtract_wf, 
subtract-add-cancel, 
radd_functionality, 
rsum-split-last, 
trivial-rless-radd, 
itermSubtract_wf, 
int_term_value_subtract_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
functionEquality, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}i:\{n..m  +  1\msupminus{}\}.  (r0  \mleq{}  x[i]))  {}\mRightarrow{}  (r0  <  \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\{n..m  +  1\msupminus{}\}.  (r0  <  x[i])))
Date html generated:
2016_10_26-AM-09_17_28
Last ObjectModification:
2016_09_28-PM-06_09_00
Theory : reals
Home
Index