Nuprl Lemma : rsum-positive-implies

n,m:ℤ. ∀x:{n..m 1-} ⟶ ℝ.  ((r0 < Σ{x[i] n≤i≤m})  (∃i:{n..m 1-}. (r0 < |x[i]|)))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rless: x < y rabs: |x| int-to-real: r(n) real: int_seg: {i..j-} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) and: P ∧ Q squash: T less_than: a < b nat_plus: + false: False sq_exists: x:{A| B[x]} rless: x < y uimplies: supposing a top: Top subtype_rel: A ⊆B lelt: i ≤ j < k int_seg: {i..j-} guard: {T} nequal: a ≠ b ∈  rev_implies:  Q iff: ⇐⇒ Q rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rneq: x ≠ y rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  small-reciprocal-real rsum_wf int_seg_wf rless_wf int-to-real_wf real_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermConstant_wf itermVar_wf itermAdd_wf intformless_wf satisfiable-full-omega-tt nat_plus_properties rsum-empty rabs_wf int_term_value_mul_lemma itermMultiply_wf less_than_wf int_formula_prop_not_lemma intformnot_wf mul_nat_plus rless-int-fractions2 int_formula_prop_le_lemma int_term_value_subtract_lemma intformle_wf itermSubtract_wf equal-wf-T-base int_subtype_base equal-wf-base int_formula_prop_eq_lemma int_formula_prop_and_lemma intformeq_wf intformand_wf int_seg_properties int_entire_a rneq-int subtract_wf rdiv_wf rless-cases all_wf rleq_weakening_rless rsum_functionality_wrt_rleq2 rleq_functionality_wrt_implies rleq_weakening_equal le_wf lelt_wf rmul_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert_wf bnot_wf not_wf rleq_functionality req_weakening rsum-constant2 bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot add-commutes nat_plus_wf rmul_preserves_req rless-int req_wf mul_bounds_1b rneq_functionality rmul-int rinv_wf2 uiff_transitivity req_functionality rmul_functionality rdiv_functionality req_inversion rinv-of-rmul req_transitivity real_term_polynomial real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul-rinv rmul-rinv3 rabs-rsum rabs-of-nonneg rless_irreflexivity rless_transitivity1 not-all-int_seg2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality addEquality natural_numberEquality hypothesis productElimination functionEquality intEquality unionElimination computeAll int_eqEquality dependent_pairFormation imageElimination rename setElimination independent_isectElimination voidEquality voidElimination isect_memberEquality closedConclusion baseApply baseClosed independent_pairFormation independent_functionElimination because_Cache multiplyEquality equalitySymmetry equalityTransitivity equalityElimination promote_hyp instantiate cumulativity impliesFunctionality inrFormation applyLambdaEquality inlFormation

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.    ((r0  <  \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\})  {}\mRightarrow{}  (\mexists{}i:\{n..m  +  1\msupminus{}\}.  (r0  <  |x[i]|)))



Date html generated: 2017_10_03-AM-09_00_22
Last ObjectModification: 2017_07_28-AM-07_39_28

Theory : reals


Home Index