Nuprl Lemma : rsum-positive-implies
∀n,m:ℤ. ∀x:{n..m + 1-} ⟶ ℝ.  ((r0 < Σ{x[i] | n≤i≤m}) 
⇒ (∃i:{n..m + 1-}. (r0 < |x[i]|)))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
and: P ∧ Q
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
false: False
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
uimplies: b supposing a
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
nequal: a ≠ b ∈ T 
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rge: x ≥ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
small-reciprocal-real, 
rsum_wf, 
int_seg_wf, 
rless_wf, 
int-to-real_wf, 
real_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
rsum-empty, 
rabs_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
less_than_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
mul_nat_plus, 
rless-int-fractions2, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
intformle_wf, 
itermSubtract_wf, 
equal-wf-T-base, 
int_subtype_base, 
equal-wf-base, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
intformand_wf, 
int_seg_properties, 
int_entire_a, 
rneq-int, 
subtract_wf, 
rdiv_wf, 
rless-cases, 
all_wf, 
rleq_weakening_rless, 
rsum_functionality_wrt_rleq2, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
le_wf, 
lelt_wf, 
rmul_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
bnot_wf, 
not_wf, 
rleq_functionality, 
req_weakening, 
rsum-constant2, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
add-commutes, 
nat_plus_wf, 
rmul_preserves_req, 
rless-int, 
req_wf, 
mul_bounds_1b, 
rneq_functionality, 
rmul-int, 
rinv_wf2, 
uiff_transitivity, 
req_functionality, 
rmul_functionality, 
rdiv_functionality, 
req_inversion, 
rinv-of-rmul, 
req_transitivity, 
real_term_polynomial, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-rinv, 
rmul-rinv3, 
rabs-rsum, 
rabs-of-nonneg, 
rless_irreflexivity, 
rless_transitivity1, 
not-all-int_seg2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
productElimination, 
functionEquality, 
intEquality, 
unionElimination, 
computeAll, 
int_eqEquality, 
dependent_pairFormation, 
imageElimination, 
rename, 
setElimination, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
closedConclusion, 
baseApply, 
baseClosed, 
independent_pairFormation, 
independent_functionElimination, 
because_Cache, 
multiplyEquality, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
impliesFunctionality, 
inrFormation, 
applyLambdaEquality, 
inlFormation
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.    ((r0  <  \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\})  {}\mRightarrow{}  (\mexists{}i:\{n..m  +  1\msupminus{}\}.  (r0  <  |x[i]|)))
Date html generated:
2017_10_03-AM-09_00_22
Last ObjectModification:
2017_07_28-AM-07_39_28
Theory : reals
Home
Index