Nuprl Lemma : r-archimedean-rabs-ext

x:ℝ. ∃n:ℕ(|x| ≤ r(n))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  member: t ∈ T r-archimedean-rabs r-archimedean uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a canonical-bound-property rmax_lb
Lemmas referenced :  r-archimedean-rabs lifting-strict-spread strict4-spread r-archimedean canonical-bound-property rmax_lb
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  (|x|  \mleq{}  r(n))



Date html generated: 2017_10_03-AM-09_22_51
Last ObjectModification: 2017_07_28-AM-07_46_04

Theory : reals


Home Index