Nuprl Lemma : r-archimedean-rabs-ext
∀x:ℝ. ∃n:ℕ. (|x| ≤ r(n))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
r-archimedean-rabs, 
r-archimedean, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
canonical-bound-property, 
rmax_lb
Lemmas referenced : 
r-archimedean-rabs, 
lifting-strict-spread, 
strict4-spread, 
r-archimedean, 
canonical-bound-property, 
rmax_lb
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  (|x|  \mleq{}  r(n))
Date html generated:
2017_10_03-AM-09_22_51
Last ObjectModification:
2017_07_28-AM-07_46_04
Theory : reals
Home
Index