Nuprl Lemma : r-archimedean-rabs
∀x:ℝ. ∃n:ℕ. (|x| ≤ r(n))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rabs: |x|, 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
nat: ℕ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
cand: A c∧ B, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
true: True, 
squash: ↓T, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
r-archimedean, 
rabs-as-rmax, 
rmax_lb, 
rminus_wf, 
int-to-real_wf, 
rleq_wf, 
rabs_wf, 
real_wf, 
rmul_reverses_rleq, 
rleq-int, 
false_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
rminus-rminus, 
rleq_functionality, 
req_transitivity, 
req_weakening, 
squash_wf, 
true_wf, 
rminus-int, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
sqequalRule, 
isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
minusEquality, 
natural_numberEquality, 
independent_functionElimination, 
promote_hyp, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
approximateComputation, 
int_eqEquality, 
intEquality
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  (|x|  \mleq{}  r(n))
Date html generated:
2017_10_03-AM-09_22_41
Last ObjectModification:
2017_07_28-AM-07_45_56
Theory : reals
Home
Index