Nuprl Lemma : rat-midpoint_wf
∀[a,b:ℤ × ℕ+].  (rat-midpoint(a;b) ∈ ℤ × ℕ+)
Proof
Definitions occuring in Statement : 
rat-midpoint: rat-midpoint(a;b), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rat-midpoint: rat-midpoint(a;b), 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False
Lemmas referenced : 
rat-nat-div_wf, 
ratadd_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
productIsType
Latex:
\mforall{}[a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].    (rat-midpoint(a;b)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
Date html generated:
2019_10_30-AM-09_31_44
Last ObjectModification:
2019_02_17-PM-06_13_19
Theory : reals
Home
Index