Nuprl Lemma : rcp-Binet-Cauchy-corollary

[a,b:ℝ^3].  ((a b)⋅(a b) ((a⋅b⋅b) a⋅b⋅a))


Proof




Definitions occuring in Statement :  rcp: (a b) dot-product: x⋅y real-vec: ^n rsub: y req: y rmul: b uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  rcp-Binet-Cauchy req_witness dot-product_wf false_wf le_wf rcp_wf rsub_wf rmul_wf real-vec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation because_Cache independent_functionElimination isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbR{}\^{}3].    ((a  x  b)\mcdot{}(a  x  b)  =  ((a\mcdot{}a  *  b\mcdot{}b)  -  a\mcdot{}b  *  b\mcdot{}a))



Date html generated: 2018_05_22-PM-02_42_49
Last ObjectModification: 2018_05_09-PM-01_38_42

Theory : reals


Home Index