Nuprl Lemma : rcp-Binet-Cauchy-corollary
∀[a,b:ℝ^3].  ((a x b)⋅(a x b) = ((a⋅a * b⋅b) - a⋅b * b⋅a))
Proof
Definitions occuring in Statement : 
rcp: (a x b)
, 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
rcp-Binet-Cauchy, 
req_witness, 
dot-product_wf, 
false_wf, 
le_wf, 
rcp_wf, 
rsub_wf, 
rmul_wf, 
real-vec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbR{}\^{}3].    ((a  x  b)\mcdot{}(a  x  b)  =  ((a\mcdot{}a  *  b\mcdot{}b)  -  a\mcdot{}b  *  b\mcdot{}a))
Date html generated:
2018_05_22-PM-02_42_49
Last ObjectModification:
2018_05_09-PM-01_38_42
Theory : reals
Home
Index