Nuprl Lemma : real-matrix-scalar-mul_wf
∀[a,b:ℕ]. ∀[c:ℝ]. ∀[A:ℝ(a × b)].  (c*A ∈ ℝ(a × b))
Proof
Definitions occuring in Statement : 
real-matrix-scalar-mul: c*A, 
rmatrix: ℝ(a × b), 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
rmatrix: ℝ(a × b), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
real-matrix-scalar-mul: c*A, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ
Lemmas referenced : 
rmul_wf, 
int_seg_wf, 
real_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[c:\mBbbR{}].  \mforall{}[A:\mBbbR{}(a  \mtimes{}  b)].    (c*A  \mmember{}  \mBbbR{}(a  \mtimes{}  b))
 Date html generated: 
2019_10_30-AM-08_19_15
 Last ObjectModification: 
2019_09_19-AM-11_58_46
Theory : reals
Home
Index