Nuprl Lemma : real-vec-mul-linear-sub
∀[n:ℕ]. ∀[X,Y:ℝ^n]. ∀[a:ℝ].  req-vec(n;a*X - Y;a*X - a*Y)
Proof
Definitions occuring in Statement : 
real-vec-mul: a*X, 
real-vec-sub: X - Y, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
real-vec-mul: a*X, 
real-vec-sub: X - Y, 
req-vec: req-vec(n;x;y), 
all: ∀x:A. B[x], 
real-vec: ℝ^n, 
and: P ∧ Q, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q
Lemmas referenced : 
rmul-rsub-distrib, 
int_seg_wf, 
req_witness, 
real-vec-mul_wf, 
real-vec-sub_wf, 
real-vec_wf, 
real_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
productElimination, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}\^{}n].  \mforall{}[a:\mBbbR{}].    req-vec(n;a*X  -  Y;a*X  -  a*Y)
 Date html generated: 
2016_10_26-AM-10_16_36
 Last ObjectModification: 
2016_09_28-PM-00_38_49
Theory : reals
Home
Index