Nuprl Lemma : reals-complete

mcomplete(ℝ with rmetric())


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) mk-metric-space: with d rmetric: rmetric() real:
Definitions unfolded in proof :  rmetric: rmetric() mcomplete: mcomplete(M) mk-metric-space: with d mconverges: x[n]↓ as n→∞ mcauchy: mcauchy(d;n.x[n]) mconverges-to: lim n→∞.x[n] y mdist: mdist(d;x;y) converges-to: lim n→∞.x[n] y cauchy: cauchy(n.x[n]) converges: x[n]↓ as n→∞ all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uall: [x:A]. B[x] prop:
Lemmas referenced :  converges-iff-cauchy istype-nat cauchy_wf real_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin lambdaEquality_alt applyEquality hypothesisEquality productElimination independent_functionElimination universeIsType isectElimination functionIsType

Latex:
mcomplete(\mBbbR{}  with  rmetric())



Date html generated: 2019_10_30-AM-06_43_51
Last ObjectModification: 2019_10_02-AM-10_56_13

Theory : reals


Home Index