Nuprl Lemma : rexp-of-nonneg
∀x:ℝ. ((r0 ≤ x) ⇒ (r1 ≤ e^x))
Proof
Definitions occuring in Statement : 
rexp: e^x, 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
guard: {T}
Lemmas referenced : 
rleq_wf, 
int-to-real_wf, 
real_wf, 
radd_wf, 
rexp_wf, 
trivial-rleq-radd, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rexp-of-nonneg-stronger
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  (r1  \mleq{}  e\^{}x))
Date html generated:
2016_10_26-AM-09_27_58
Last ObjectModification:
2016_09_11-PM-07_52_42
Theory : reals
Home
Index