Nuprl Lemma : rexp-of-nonneg-stronger

x:ℝ((r0 ≤ x)  ((r1 x) ≤ e^x))


Proof




Definitions occuring in Statement :  rexp: e^x rleq: x ≤ y radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] series-sum: Σn.x[n] a converges-to: lim n→∞.x[n] y sq_exists: x:{A| B[x]} nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_apply: x[s] nat_plus: + rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) eq_int: (i =z j) nequal: a ≠ b ∈  int_upper: {i...} ml-term-to-poly: ml-term-to-poly(t) nil: [] has-value: (a)↓ req_int_terms: t1 ≡ t2 absval: |i| rdiv: (x/y) pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] lelt: i ≤ j < k int_nzero: -o subtype_rel: A ⊆B true: True squash: T less_than: a < b subtract: m primrec: primrec(n;b;c) fact: (n)!
Lemmas referenced :  rexp-is-limit rleq_wf int-to-real_wf real_wf false_wf le_wf nat_wf all_wf rabs_wf rsub_wf rsum_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf radd_wf rdiv_wf rless-int nat_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf radd_functionality rsum-split-first req_functionality req_weakening int_formula_prop_le_lemma intformle_wf decidable__le ifthenelse_wf int_upper_wf int_formula_prop_eq_lemma intformeq_wf int_upper_properties rsum_functionality2 rsum-zero radd-zero itermSubtract_wf itermAdd_wf rleq_functionality rabs_functionality rsub_functionality req_transitivity real_polynomial_null evalall-sqequal real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_var_lemma req-iff-rsub-is-0 rabs-int minus-zero rmul_preserves_rleq rmul_wf itermMultiply_wf rinv_wf2 rleq-int real_term_value_mul_lemma rmul-rinv int-rdiv-req rsum_functionality_wrt_rleq rexp_wf rnexp_wf int_subtype_base equal-wf-base int_seg_properties nequal_wf less_than_wf subtype_rel_sets int_seg_subtype_nat fact_wf int-rdiv_wf rleq-limit nequal-le-implies fact0_redex_lemma rnexp_zero_lemma rmul-ident-div rmul-int uiff_transitivity rleq_weakening_equal rnexp1 rdiv_functionality rmul-one-both rmul-rdiv-cancel2 set_subtype_base fact-non-zero rneq-int zero-mul rnexp-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination natural_numberEquality hypothesis dependent_set_memberFormation dependent_set_memberEquality sqequalRule independent_pairFormation setElimination rename lambdaEquality functionEquality because_Cache unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination addEquality inrFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll minusEquality baseClosed sqleReflexivity mlComputation applyLambdaEquality setEquality applyEquality multiplyEquality imageMemberEquality

Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  ((r1  +  x)  \mleq{}  e\^{}x))



Date html generated: 2017_10_03-AM-09_30_26
Last ObjectModification: 2017_07_28-AM-07_49_12

Theory : reals


Home Index