Nuprl Lemma : ricint_wf

[u:ℝ]. ((-∞u] ∈ Interval)


Proof




Definitions occuring in Statement :  ricint: (-∞u] interval: Interval real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  ricint: (-∞u] interval: Interval uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B top: Top
Lemmas referenced :  it_wf unit_wf2 real_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairEquality inrEquality lemma_by_obid hypothesis applyEquality thin lambdaEquality isect_memberEquality voidElimination voidEquality sqequalHypSubstitution unionEquality inlEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[u:\mBbbR{}].  ((-\minfty{},  u]  \mmember{}  Interval)



Date html generated: 2016_05_18-AM-08_36_31
Last ObjectModification: 2015_12_27-PM-11_53_42

Theory : reals


Home Index