Nuprl Lemma : ricint_wf
∀[u:ℝ]. ((-∞, u] ∈ Interval)
Proof
Definitions occuring in Statement : 
ricint: (-∞, u]
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
ricint: (-∞, u]
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
it_wf, 
unit_wf2, 
real_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairEquality, 
inrEquality, 
lemma_by_obid, 
hypothesis, 
applyEquality, 
thin, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalHypSubstitution, 
unionEquality, 
inlEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[u:\mBbbR{}].  ((-\minfty{},  u]  \mmember{}  Interval)
Date html generated:
2016_05_18-AM-08_36_31
Last ObjectModification:
2015_12_27-PM-11_53_42
Theory : reals
Home
Index