Nuprl Lemma : rleq2-iff-rnonneg2
∀[x,y:ℕ+ ⟶ ℤ].  (rleq2(x;y) ⇐⇒ rnonneg2(reg-seq-add(y;-(x))))
Proof
Definitions occuring in Statement : 
rleq2: rleq2(x;y), 
rnonneg2: rnonneg2(x), 
rminus: -(x), 
reg-seq-add: reg-seq-add(x;y), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
rminus: -(x), 
reg-seq-add: reg-seq-add(x;y), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
rleq2: rleq2(x;y), 
rnonneg2: rnonneg2(x), 
all: ∀x:A. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
subtract: n - m, 
nat_plus: ℕ+, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
le: A ≤ B, 
guard: {T}, 
uimplies: b supposing a, 
so_apply: x[s], 
rev_implies: P ⇐ Q
Lemmas referenced : 
int_upper_wf, 
all_wf, 
le_wf, 
less_than_transitivity1, 
less_than_wf, 
nat_plus_wf, 
rleq2_wf, 
subtract_wf, 
rnonneg2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
lambdaEquality, 
multiplyEquality, 
minusEquality, 
natural_numberEquality, 
addEquality, 
applyEquality, 
dependent_set_memberEquality, 
because_Cache, 
independent_isectElimination, 
functionEquality, 
intEquality
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (rleq2(x;y)  \mLeftarrow{}{}\mRightarrow{}  rnonneg2(reg-seq-add(y;-(x))))
Date html generated:
2016_05_18-AM-07_15_16
Last ObjectModification:
2015_12_28-AM-00_44_30
Theory : reals
Home
Index