Nuprl Lemma : rleq2-iff-rnonneg2

[x,y:ℕ+ ⟶ ℤ].  (rleq2(x;y) ⇐⇒ rnonneg2(reg-seq-add(y;-(x))))


Proof




Definitions occuring in Statement :  rleq2: rleq2(x;y) rnonneg2: rnonneg2(x) rminus: -(x) reg-seq-add: reg-seq-add(x;y) nat_plus: + uall: [x:A]. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  rminus: -(x) reg-seq-add: reg-seq-add(x;y) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rleq2: rleq2(x;y) rnonneg2: rnonneg2(x) all: x:A. B[x] member: t ∈ T exists: x:A. B[x] subtract: m nat_plus: + prop: so_lambda: λ2x.t[x] int_upper: {i...} le: A ≤ B guard: {T} uimplies: supposing a so_apply: x[s] rev_implies:  Q
Lemmas referenced :  int_upper_wf all_wf le_wf less_than_transitivity1 less_than_wf nat_plus_wf rleq2_wf subtract_wf rnonneg2_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality productElimination dependent_pairFormation lemma_by_obid isectElimination setElimination rename lambdaEquality multiplyEquality minusEquality natural_numberEquality addEquality applyEquality dependent_set_memberEquality because_Cache independent_isectElimination functionEquality intEquality

Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (rleq2(x;y)  \mLeftarrow{}{}\mRightarrow{}  rnonneg2(reg-seq-add(y;-(x))))



Date html generated: 2016_05_18-AM-07_15_16
Last ObjectModification: 2015_12_28-AM-00_44_30

Theory : reals


Home Index