Nuprl Lemma : rleq2_wf
∀[x,y:ℕ+ ⟶ ℤ].  (rleq2(x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rleq2: rleq2(x;y)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rleq2: rleq2(x;y)
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_plus_wf, 
exists_wf, 
int_upper_wf, 
le_wf, 
subtract_wf, 
less_than_transitivity1, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
hypothesisEquality, 
multiplyEquality, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (rleq2(x;y)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-07_15_10
Last ObjectModification:
2015_12_28-AM-00_42_43
Theory : reals
Home
Index