Nuprl Lemma : rless-content
∀[x:ℝ]. ∀[y:{y:ℝ| x < y} ].  (rlessw(x;y) ∈ x < y)
Proof
Definitions occuring in Statement : 
rlessw: rlessw(x;y)
, 
rless: x < y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rlessw_wf, 
set_wf, 
real_wf, 
rless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
lambdaEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\{y:\mBbbR{}|  x  <  y\}  ].    (rlessw(x;y)  \mmember{}  x  <  y)
Date html generated:
2016_05_18-AM-07_04_22
Last ObjectModification:
2015_12_28-AM-00_35_39
Theory : reals
Home
Index