Nuprl Lemma : rless-content

[x:ℝ]. ∀[y:{y:ℝx < y} ].  (rlessw(x;y) ∈ x < y)


Proof




Definitions occuring in Statement :  rlessw: rlessw(x;y) rless: x < y real: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rlessw_wf set_wf real_wf rless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry isectElimination lambdaEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[y:\{y:\mBbbR{}|  x  <  y\}  ].    (rlessw(x;y)  \mmember{}  x  <  y)



Date html generated: 2016_05_18-AM-07_04_22
Last ObjectModification: 2015_12_28-AM-00_35_39

Theory : reals


Home Index