Nuprl Lemma : rmax_functionality_wrt_rleq

[x1,x2,y1,y2:ℝ].  (rmax(x1;y1) ≤ rmax(x2;y2)) supposing ((y1 ≤ y2) and (x1 ≤ x2))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q cand: c∧ B rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: guard: {T}
Lemmas referenced :  rmax_lb rmax_wf less_than'_wf rsub_wf real_wf nat_plus_wf rleq_wf rleq-rmax rleq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_pairFormation sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[x1,x2,y1,y2:\mBbbR{}].    (rmax(x1;y1)  \mleq{}  rmax(x2;y2))  supposing  ((y1  \mleq{}  y2)  and  (x1  \mleq{}  x2))



Date html generated: 2016_05_18-AM-07_16_30
Last ObjectModification: 2015_12_28-AM-00_43_25

Theory : reals


Home Index