Nuprl Lemma : rneq-by-function
∀x,y,a,b:ℝ. ∀f:ℝ ⟶ ℝ.  (a ≠ b 
⇒ (f[x] = a) 
⇒ (f[y] = b) 
⇒ (∀x,y:ℝ.  ((x = y) 
⇒ (f[x] = f[y]))) 
⇒ x ≠ y)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
not: ¬A
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
false: False
Lemmas referenced : 
real-weak-Markov, 
rneq-cases, 
rneq_functionality, 
req_wf, 
istype-void, 
rneq_wf, 
real_wf, 
rneq_irreflexivity, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
productElimination, 
unionElimination, 
inlFormation_alt, 
universeIsType, 
isectElimination, 
sqequalRule, 
functionIsType, 
inrFormation_alt, 
inhabitedIsType, 
voidElimination
Latex:
\mforall{}x,y,a,b:\mBbbR{}.  \mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    (a  \mneq{}  b  {}\mRightarrow{}  (f[x]  =  a)  {}\mRightarrow{}  (f[y]  =  b)  {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))  {}\mRightarrow{}  x  \mneq{}  y)
Date html generated:
2019_10_29-AM-10_23_31
Last ObjectModification:
2019_04_04-AM-11_02_32
Theory : reals
Home
Index