Nuprl Lemma : rv-Tsep-alt'

n:ℕ. ∀a,b,c,d:ℝ^n.  ((¬¬(∃u,v,w:ℝ^n. ((¬(u ≠ v ∧ v ≠ w ∧ u-v-w))) ∧ ab=uv ∧ cd=uw)))  a ≠  c ≠ d)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q not: ¬A all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rv-Tsep-alt rv-T_wf not_wf real-vec-sep_wf rv-between_wf exists_wf real-vec_wf rv-congruent_wf rv-T-iff
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality sqequalHypSubstitution isectElimination thin hypothesis productEquality sqequalRule lambdaEquality because_Cache allFunctionality lambdaFormation independent_functionElimination impliesFunctionality existsFunctionality productElimination independent_pairFormation dependent_functionElimination andLevelFunctionality existsLevelFunctionality impliesLevelFunctionality promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.
    ((\mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n.  ((\mneg{}(u  \mneq{}  v  \mwedge{}  v  \mneq{}  w  \mwedge{}  (\mneg{}u-v-w)))  \mwedge{}  ab=uv  \mwedge{}  cd=uw)))  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2016_10_28-AM-07_30_02
Last ObjectModification: 2016_10_26-PM-02_13_52

Theory : reals


Home Index