Nuprl Lemma : rv-Tsep-alt'
∀n:ℕ. ∀a,b,c,d:ℝ^n.  ((¬¬(∃u,v,w:ℝ^n. ((¬(u ≠ v ∧ v ≠ w ∧ (¬u-v-w))) ∧ ab=uv ∧ cd=uw))) 
⇒ a ≠ b 
⇒ c ≠ d)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rv-Tsep-alt, 
rv-T_wf, 
not_wf, 
real-vec-sep_wf, 
rv-between_wf, 
exists_wf, 
real-vec_wf, 
rv-congruent_wf, 
rv-T-iff
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
productEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
allFunctionality, 
lambdaFormation, 
independent_functionElimination, 
impliesFunctionality, 
existsFunctionality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
andLevelFunctionality, 
existsLevelFunctionality, 
impliesLevelFunctionality, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.
    ((\mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n.  ((\mneg{}(u  \mneq{}  v  \mwedge{}  v  \mneq{}  w  \mwedge{}  (\mneg{}u-v-w)))  \mwedge{}  ab=uv  \mwedge{}  cd=uw)))  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)
Date html generated:
2016_10_28-AM-07_30_02
Last ObjectModification:
2016_10_26-PM-02_13_52
Theory : reals
Home
Index