Nuprl Lemma : rv-congruent-trans
∀[n:ℕ]. ∀[a,b,p,q,r,s:ℝ^n].  (pq=rs) supposing (ab=rs and ab=pq)
Proof
Definitions occuring in Statement : 
rv-congruent: ab=cd, 
real-vec: ℝ^n, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rv-congruent: ab=cd, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q
Lemmas referenced : 
req_inversion, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_transitivity, 
req_witness, 
req_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,p,q,r,s:\mBbbR{}\^{}n].    (pq=rs)  supposing  (ab=rs  and  ab=pq)
 Date html generated: 
2016_10_26-AM-10_28_21
 Last ObjectModification: 
2016_09_25-PM-02_10_33
Theory : reals
Home
Index