Nuprl Lemma : rv-congruent-trans

[n:ℕ]. ∀[a,b,p,q,r,s:ℝ^n].  (pq=rs) supposing (ab=rs and ab=pq)


Proof




Definitions occuring in Statement :  rv-congruent: ab=cd real-vec: ^n nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  rv-congruent: ab=cd uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: implies:  Q
Lemmas referenced :  req_inversion real-vec-dist_wf real_wf rleq_wf int-to-real_wf req_transitivity req_witness req_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality because_Cache independent_isectElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,p,q,r,s:\mBbbR{}\^{}n].    (pq=rs)  supposing  (ab=rs  and  ab=pq)



Date html generated: 2016_10_26-AM-10_28_21
Last ObjectModification: 2016_09_25-PM-02_10_33

Theory : reals


Home Index