Nuprl Lemma : rv-inner-Pasch'

n:ℕ. ∀a,b,c,p,q:ℝ^n.
  (a-p-c  b-q-c  (∃x:ℝ^n. (((a ≠  a-x-q) ∧ (b ≠  b-x-p)) ∧ rv-T(n;a;x;q) ∧ rv-T(n;b;x;p))))


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  rv-inner-Pasch2 rv-between_wf real-vec_wf nat_wf rv-between-iff real-vec-sep_wf rv-T_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination productElimination independent_functionElimination dependent_pairFormation independent_pairFormation productEquality functionEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.
    (a-p-c
    {}\mRightarrow{}  b-q-c
    {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n.  (((a  \mneq{}  q  {}\mRightarrow{}  a-x-q)  \mwedge{}  (b  \mneq{}  p  {}\mRightarrow{}  b-x-p))  \mwedge{}  rv-T(n;a;x;q)  \mwedge{}  rv-T(n;b;x;p))))



Date html generated: 2016_10_26-AM-10_50_27
Last ObjectModification: 2016_10_23-PM-11_35_30

Theory : reals


Home Index