Nuprl Lemma : rv-inner-Pasch'
∀n:ℕ. ∀a,b,c,p,q:ℝ^n.
  (a-p-c 
⇒ b-q-c 
⇒ (∃x:ℝ^n. (((a ≠ q 
⇒ a-x-q) ∧ (b ≠ p 
⇒ b-x-p)) ∧ rv-T(n;a;x;q) ∧ rv-T(n;b;x;p))))
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
rv-inner-Pasch2, 
rv-between_wf, 
real-vec_wf, 
nat_wf, 
rv-between-iff, 
real-vec-sep_wf, 
rv-T_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.
    (a-p-c
    {}\mRightarrow{}  b-q-c
    {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n.  (((a  \mneq{}  q  {}\mRightarrow{}  a-x-q)  \mwedge{}  (b  \mneq{}  p  {}\mRightarrow{}  b-x-p))  \mwedge{}  rv-T(n;a;x;q)  \mwedge{}  rv-T(n;b;x;p))))
Date html generated:
2016_10_26-AM-10_50_27
Last ObjectModification:
2016_10_23-PM-11_35_30
Theory : reals
Home
Index