Nuprl Lemma : rv-line-circle-0-ext

n:ℕ. ∀a,b,p,q:ℝ^n.
  (p ≠ q
   (d(a;p) ≤ d(a;b))
   (d(a;b) ≤ d(a;q))
   (∃u:∃u:ℝ^n [(ab=au ∧ (q ≠ u ∧ u ≠ p ∧ q-u-p))))]
       (∃v:ℝ^n [(ab=av
               ∧ (q ≠ p ∧ p ≠ v ∧ q-p-v)))
               ∧ ((d(a;p) < d(a;b))  (q-p-v ∧ ((d(a;b) < d(a;q))  q-u-p)))
               ∧ ((d(a;p) d(a;b))
                  ((u ≠  ((req-vec(n;u;p) ∧ (r0 < a⋅p)) ∨ (req-vec(n;v;p) ∧ (p a⋅p < r0))))
                    ∧ (req-vec(n;u;v)  ((p a⋅r0) ∧ req-vec(n;u;p))))))])))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) dot-product: x⋅y real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n rleq: x ≤ y rless: x < y req: y int-to-real: r(n) nat: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T sq_exists: x:A [B[x]] exists: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  rvlinecircle0_wf rleq_wf real-vec-dist_wf real_wf int-to-real_wf real-vec-sep_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction sqequalRule cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality because_Cache lambdaEquality setElimination rename setEquality natural_numberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,p,q:\mBbbR{}\^{}n.
    (p  \mneq{}  q
    {}\mRightarrow{}  (d(a;p)  \mleq{}  d(a;b))
    {}\mRightarrow{}  (d(a;b)  \mleq{}  d(a;q))
    {}\mRightarrow{}  (\mexists{}u:\mexists{}u:\mBbbR{}\^{}n  [(ab=au  \mwedge{}  (\mneg{}(q  \mneq{}  u  \mwedge{}  u  \mneq{}  p  \mwedge{}  (\mneg{}q-u-p))))]
              (\mexists{}v:\mBbbR{}\^{}n  [(ab=av
                              \mwedge{}  (\mneg{}(q  \mneq{}  p  \mwedge{}  p  \mneq{}  v  \mwedge{}  (\mneg{}q-p-v)))
                              \mwedge{}  ((d(a;p)  <  d(a;b))  {}\mRightarrow{}  (q-p-v  \mwedge{}  ((d(a;b)  <  d(a;q))  {}\mRightarrow{}  q-u-p)))
                              \mwedge{}  ((d(a;p)  =  d(a;b))
                                  {}\mRightarrow{}  ((u  \mneq{}  v
                                        {}\mRightarrow{}  ((req-vec(n;u;p)  \mwedge{}  (r0  <  p  -  a\mcdot{}q  -  p))
                                              \mvee{}  (req-vec(n;v;p)  \mwedge{}  (p  -  a\mcdot{}q  -  p  <  r0))))
                                        \mwedge{}  (req-vec(n;u;v)  {}\mRightarrow{}  ((p  -  a\mcdot{}q  -  p  =  r0)  \mwedge{}  req-vec(n;u;p))))))])))



Date html generated: 2018_05_22-PM-02_34_25
Last ObjectModification: 2018_03_27-PM-05_14_24

Theory : reals


Home Index