Nuprl Lemma : series-sum-unique
∀[x:ℕ ⟶ ℝ]. ∀[a,b:ℝ].  (a = b) supposing (Σn.x[n] = b and Σn.x[n] = a)
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
series-sum: Σn.x[n] = a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
unique-limit, 
rsum_wf, 
nat_wf, 
int_seg_wf, 
req_inversion, 
req_witness, 
converges-to_wf, 
int_seg_subtype_nat, 
false_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
because_Cache, 
addEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a,b:\mBbbR{}].    (a  =  b)  supposing  (\mSigma{}n.x[n]  =  b  and  \mSigma{}n.x[n]  =  a)
Date html generated:
2016_10_26-AM-09_19_38
Last ObjectModification:
2016_08_26-PM-01_40_07
Theory : reals
Home
Index