Nuprl Lemma : series-sum-unique

[x:ℕ ⟶ ℝ]. ∀[a,b:ℝ].  (a b) supposing n.x[n] and Σn.x[n] a)


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a req: y real: nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x]
Definitions unfolded in proof :  series-sum: Σn.x[n] a uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] nat: so_apply: x[s] subtype_rel: A ⊆B guard: {T} implies:  Q prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  unique-limit rsum_wf nat_wf int_seg_wf req_inversion req_witness converges-to_wf int_seg_subtype_nat false_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis applyEquality functionExtensionality because_Cache addEquality independent_isectElimination independent_functionElimination independent_pairFormation lambdaFormation isect_memberEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[a,b:\mBbbR{}].    (a  =  b)  supposing  (\mSigma{}n.x[n]  =  b  and  \mSigma{}n.x[n]  =  a)



Date html generated: 2016_10_26-AM-09_19_38
Last ObjectModification: 2016_08_26-PM-01_40_07

Theory : reals


Home Index