Nuprl Lemma : sq_stable__is-mfun
∀[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  SqStable(f:FUN(X;Y))
Proof
Definitions occuring in Statement : 
is-mfun: f:FUN(X;Y), 
metric: metric(X), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
is-mfun: f:FUN(X;Y), 
all: ∀x:A. B[x], 
meq: x ≡ y, 
metric: metric(X), 
so_apply: x[s]
Lemmas referenced : 
sq_stable__from_stable, 
is-mfun_wf, 
stable__is-mfun, 
req_witness, 
int-to-real_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    SqStable(f:FUN(X;Y))
 Date html generated: 
2019_10_29-AM-11_16_18
 Last ObjectModification: 
2019_10_02-AM-09_56_31
Theory : reals
Home
Index