Nuprl Lemma : square-nonzero
∀x:ℝ. (x * x ≠ r0 ⇐⇒ x ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q
Lemmas referenced : 
rneq_wf, 
rmul_wf, 
int-to-real_wf, 
rmul-neq-zero, 
real_wf, 
rmul-nonzero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}x:\mBbbR{}.  (x  *  x  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)
Date html generated:
2016_10_26-AM-09_13_54
Last ObjectModification:
2016_09_06-PM-03_05_44
Theory : reals
Home
Index