Nuprl Lemma : square-nonzero

x:ℝ(x x ≠ r0 ⇐⇒ x ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q
Lemmas referenced :  rneq_wf rmul_wf int-to-real_wf rmul-neq-zero real_wf rmul-nonzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination because_Cache independent_functionElimination productElimination

Latex:
\mforall{}x:\mBbbR{}.  (x  *  x  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)



Date html generated: 2016_10_26-AM-09_13_54
Last ObjectModification: 2016_09_06-PM-03_05_44

Theory : reals


Home Index