Nuprl Lemma : stable__reqmatrix
∀[a,b:ℕ]. ∀[X,Y:ℝ(a × b)].  Stable{X ≡ Y}
Proof
Definitions occuring in Statement : 
reqmatrix: X ≡ Y, 
rmatrix: ℝ(a × b), 
nat: ℕ, 
stable: Stable{P}, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
reqmatrix: X ≡ Y, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
rmatrix: ℝ(a × b), 
so_apply: x[s], 
implies: P ⇒ Q, 
stable: Stable{P}, 
uimplies: b supposing a
Lemmas referenced : 
stable__all, 
int_seg_wf, 
req_wf, 
stable_req, 
req_witness, 
rmatrix_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
productElimination, 
applyEquality, 
universeIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
because_Cache, 
isect_memberEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}(a  \mtimes{}  b)].    Stable\{X  \mequiv{}  Y\}
 Date html generated: 
2019_10_30-AM-08_13_13
 Last ObjectModification: 
2019_09_19-AM-10_49_45
Theory : reals
Home
Index