Nuprl Lemma : subsequence-mconverges
∀[X:Type]. ∀[d:metric(X)]. ∀[a:X].  ∀x,y:ℕ ⟶ X.  (subsequence(a,b.a ≡ b;n.x[n];n.y[n]) ⇒ x[n]↓ as n→∞ ⇒ y[n]↓ as n→∞)
Proof
Definitions occuring in Statement : 
mconverges: x[n]↓ as n→∞, 
meq: x ≡ y, 
metric: metric(X), 
subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
mconverges: x[n]↓ as n→∞, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
metric: metric(X), 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
subsequence-mconverges-to, 
istype-nat, 
mconverges-to_wf, 
mconverges_wf, 
subsequence_wf, 
meq_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
universeIsType, 
setElimination, 
rename, 
inhabitedIsType, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[a:X].
    \mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  X.    (subsequence(a,b.a  \mequiv{}  b;n.x[n];n.y[n])  {}\mRightarrow{}  x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  {}\mRightarrow{}  y[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{})
 Date html generated: 
2019_10_30-AM-06_40_49
 Last ObjectModification: 
2019_10_02-AM-10_53_33
Theory : reals
Home
Index