Nuprl Lemma : functor-comp-id
∀[A,B:SmallCategory]. ∀[F:Functor(A;B)].
  ((functor-comp(F;1) = F ∈ Functor(A;B)) ∧ (functor-comp(1;F) = F ∈ Functor(A;B)))
Proof
Definitions occuring in Statement : 
id_functor: 1
, 
functor-comp: functor-comp(F;G)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
id_functor: 1
, 
functor-comp: functor-comp(F;G)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal-functors, 
functor-comp_wf, 
id_functor_wf, 
ob_mk_functor_lemma, 
functor-ob_wf, 
cat-ob_wf, 
arrow_mk_functor_lemma, 
functor-arrow_wf, 
cat-arrow_wf, 
cat-functor_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
applyEquality, 
because_Cache, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[A,B:SmallCategory].  \mforall{}[F:Functor(A;B)].    ((functor-comp(F;1)  =  F)  \mwedge{}  (functor-comp(1;F)  =  F))
Date html generated:
2017_01_19-PM-02_53_40
Last ObjectModification:
2017_01_13-PM-01_28_24
Theory : small!categories
Home
Index