Nuprl Lemma : groupoid-cube-lemma
∀[G:Groupoid]. ∀[x000,x100,x010,x110,x001,x101,x011,x111:cat-ob(cat(G))]. ∀[a:cat-arrow(cat(G)) x001 x011].
∀[b:cat-arrow(cat(G)) x011 x111]. ∀[c:cat-arrow(cat(G)) x001 x101]. ∀[d:cat-arrow(cat(G)) x101 x111].
∀[e:cat-arrow(cat(G)) x000 x010]. ∀[f:cat-arrow(cat(G)) x010 x110]. ∀[g:cat-arrow(cat(G)) x000 x100].
∀[h:cat-arrow(cat(G)) x100 x110]. ∀[i:cat-arrow(cat(G)) x000 x001]. ∀[j:cat-arrow(cat(G)) x010 x011].
∀[k:cat-arrow(cat(G)) x110 x111]. ∀[l:cat-arrow(cat(G)) x100 x101].
uiff(a o b = c o d;e o f = g o h) supposing e o j = i o a ∧ f o k = j o b ∧ l o d = h o k ∧ i o c = g o l
Proof
Definitions occuring in Statement :
groupoid-cat: cat(G)
,
groupoid: Groupoid
,
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
apply: f a
Definitions unfolded in proof :
prop: ℙ
,
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
,
cand: A c∧ B
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
and: P ∧ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
groupoid_wf,
cat-ob_wf,
cat-arrow_wf,
and_wf,
groupoid-cat_wf,
cat-square-commutes_wf,
groupoid-cube
Rules used in proof :
applyEquality,
equalitySymmetry,
equalityTransitivity,
isect_memberEquality,
independent_pairEquality,
axiomEquality,
sqequalRule,
independent_isectElimination,
independent_pairFormation,
introduction,
productElimination,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
hypothesis,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
lemma_by_obid,
cut
Latex:
\mforall{}[G:Groupoid]. \mforall{}[x000,x100,x010,x110,x001,x101,x011,x111:cat-ob(cat(G))].
\mforall{}[a:cat-arrow(cat(G)) x001 x011]. \mforall{}[b:cat-arrow(cat(G)) x011 x111].
\mforall{}[c:cat-arrow(cat(G)) x001 x101]. \mforall{}[d:cat-arrow(cat(G)) x101 x111].
\mforall{}[e:cat-arrow(cat(G)) x000 x010]. \mforall{}[f:cat-arrow(cat(G)) x010 x110].
\mforall{}[g:cat-arrow(cat(G)) x000 x100]. \mforall{}[h:cat-arrow(cat(G)) x100 x110].
\mforall{}[i:cat-arrow(cat(G)) x000 x001]. \mforall{}[j:cat-arrow(cat(G)) x010 x011].
\mforall{}[k:cat-arrow(cat(G)) x110 x111]. \mforall{}[l:cat-arrow(cat(G)) x100 x101].
uiff(a o b = c o d;e o f = g o h)
supposing e o j = i o a \mwedge{} f o k = j o b \mwedge{} l o d = h o k \mwedge{} i o c = g o l
Date html generated:
2016_05_18-AM-11_55_37
Last ObjectModification:
2015_12_28-PM-02_23_15
Theory : small!categories
Home
Index