Nuprl Lemma : left-right-inverse-unique
∀[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x y]. ∀[g2:cat-arrow(C) y x].
  ∀[g1:cat-arrow(C) y x]. g1 = g2 ∈ (cat-arrow(C) y x) supposing fg1=1 supposing g2f=1
Proof
Definitions occuring in Statement : 
cat-inverse: fg=1
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
cat-inverse: fg=1
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
cat-inverse_wf, 
cat-arrow_wf, 
cat-ob_wf, 
small-category_wf, 
cat-comp_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
cat-comp-ident, 
cat-comp-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].  \mforall{}[g2:cat-arrow(C)  y  x].
    \mforall{}[g1:cat-arrow(C)  y  x].  g1  =  g2  supposing  fg1=1  supposing  g2f=1
Date html generated:
2017_10_05-AM-00_45_41
Last ObjectModification:
2017_07_28-AM-09_19_02
Theory : small!categories
Home
Index