Nuprl Lemma : left-right-inverse-unique

[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) y]. ∀[g2:cat-arrow(C) x].
  ∀[g1:cat-arrow(C) x]. g1 g2 ∈ (cat-arrow(C) x) supposing fg1=1 supposing g2f=1


Proof




Definitions occuring in Statement :  cat-inverse: fg=1 cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: cat-inverse: fg=1 true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  cat-inverse_wf cat-arrow_wf cat-ob_wf small-category_wf cat-comp_wf equal_wf squash_wf true_wf iff_weakening_equal cat-comp-ident cat-comp-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry applyEquality natural_numberEquality lambdaEquality imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].  \mforall{}[g2:cat-arrow(C)  y  x].
    \mforall{}[g1:cat-arrow(C)  y  x].  g1  =  g2  supposing  fg1=1  supposing  g2f=1



Date html generated: 2017_10_05-AM-00_45_41
Last ObjectModification: 2017_07_28-AM-09_19_02

Theory : small!categories


Home Index