Nuprl Lemma : monad-op_wf

[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (monad-op(M;x) ∈ cat-arrow(C) M(M(x)) M(x))


Proof




Definitions occuring in Statement :  monad-op: monad-op(M;x) monad-fun: M(x) cat-monad: Monad(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  mk-functor: mk-functor functor-comp: functor-comp(F;G) functor-ob: ob(F) uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top all: x:A. B[x] id_functor: 1 pi1: fst(t) monad-functor: monad-functor(M) pi2: snd(t) monad-fun: M(x) nat-trans: nat-trans(C;D;F;G) cat-monad: Monad(C) monad-op: monad-op(M;x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-monad_wf cat-ob_wf functor-comp_wf functor-ob_wf cat-arrow_wf subtype_rel-equal arrow_mk_functor_lemma ob_mk_functor_lemma
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality because_Cache independent_isectElimination isectElimination hypothesisEquality applyEquality hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid productElimination rename thin setElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (monad-op(M;x)  \mmember{}  cat-arrow(C)  M(M(x))  M(x))



Date html generated: 2017_01_19-PM-02_58_23
Last ObjectModification: 2017_01_17-PM-03_46_27

Theory : small!categories


Home Index