Nuprl Lemma : monad-op_wf
∀[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (monad-op(M;x) ∈ cat-arrow(C) M(M(x)) M(x))
Proof
Definitions occuring in Statement : 
monad-op: monad-op(M;x), 
monad-fun: M(x), 
cat-monad: Monad(C), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
small-category: SmallCategory, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a
Definitions unfolded in proof : 
mk-functor: mk-functor, 
functor-comp: functor-comp(F;G), 
functor-ob: ob(F), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
all: ∀x:A. B[x], 
id_functor: 1, 
pi1: fst(t), 
monad-functor: monad-functor(M), 
pi2: snd(t), 
monad-fun: M(x), 
nat-trans: nat-trans(C;D;F;G), 
cat-monad: Monad(C), 
monad-op: monad-op(M;x), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-monad_wf, 
cat-ob_wf, 
functor-comp_wf, 
functor-ob_wf, 
cat-arrow_wf, 
subtype_rel-equal, 
arrow_mk_functor_lemma, 
ob_mk_functor_lemma
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (monad-op(M;x)  \mmember{}  cat-arrow(C)  M(M(x))  M(x))
Date html generated:
2017_01_19-PM-02_58_23
Last ObjectModification:
2017_01_17-PM-03_46_27
Theory : small!categories
Home
Index