Nuprl Lemma : strong-overt_wf

[X:Type]. (sOvert(X) ∈ ℙ')


Proof




Definitions occuring in Statement :  strong-overt: sOvert(X) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strong-overt: sOvert(X) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop:
Lemmas referenced :  all_wf exists_wf Open_wf iff_wf in-open_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality lambdaEquality functionEquality productEquality cumulativity hypothesisEquality hypothesis because_Cache applyEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:Type].  (sOvert(X)  \mmember{}  \mBbbP{}')



Date html generated: 2019_10_31-AM-07_19_24
Last ObjectModification: 2015_12_28-AM-11_21_19

Theory : synthetic!topology


Home Index