Nuprl Lemma : ml-absval_wf

[x:ℤ]. (ml-absval(x) ∈ ℤ)


Proof




Definitions occuring in Statement :  ml-absval: ml-absval(x) uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ml-absval: ml-absval(x) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff prop:
Lemmas referenced :  ml_apply_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int equal_wf int-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache lambdaEquality hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination minusEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (ml-absval(x)  \mmember{}  \mBbbZ{})



Date html generated: 2017_09_29-PM-05_51_41
Last ObjectModification: 2017_05_22-PM-02_09_47

Theory : ML


Home Index