Nuprl Lemma : adjust_div_wf

[b:ℤ]. ∀[a:ℤ-o].  (adjust_div(b;a) ∈ ℤ)


Proof




Definitions occuring in Statement :  adjust_div: adjust_div(b;a) int_nzero: -o uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T adjust_div: adjust_div(b;a) int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top
Lemmas referenced :  equal_wf less_than_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule natural_numberEquality remainderEquality hypothesisEquality sqequalHypSubstitution setElimination thin rename because_Cache hypothesis lambdaFormation independent_functionElimination voidElimination extract_by_obid isectElimination intEquality lessCases independent_pairFormation baseClosed equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality isect_memberEquality voidEquality imageElimination productElimination addEquality divideEquality axiomEquality

Latex:
\mforall{}[b:\mBbbZ{}].  \mforall{}[a:\mBbbZ{}\msupminus{}\msupzero{}].    (adjust\_div(b;a)  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-AM-11_25_57
Last ObjectModification: 2018_08_20-PM-09_28_26

Theory : arithmetic


Home Index