Nuprl Lemma : AF-induction3
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (∀[Q:T ⟶ ℙ]. TI(T;x,y.R[x;y];t.Q[t])) supposing 
     ((∃R':T ⟶ T ⟶ ℙ. (AFx,y:T.R'[x;y] ∧ (∀x,y:T.  (R[x;y] 
⇒ (¬R'[x;y]))))) and 
     (∀x,y,z:T.  (R[x;y] 
⇒ R[y;z] 
⇒ R[x;z])))
Proof
Definitions occuring in Statement : 
almost-full: AFx,y:T.R[x; y]
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
almost-full: AFx,y:T.R[x; y]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
cand: A c∧ B
, 
not: ¬A
, 
nat: ℕ
, 
guard: {T}
Lemmas referenced : 
nat_wf, 
less_than_wf, 
not_wf, 
all_wf, 
almost-full_wf, 
exists_wf, 
AF-induction2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
instantiate, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
productElimination, 
lambdaFormation, 
dependent_functionElimination, 
imageElimination, 
introduction, 
dependent_pairFormation, 
independent_pairFormation, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.R[x;y];t.Q[t]))  supposing 
          ((\mexists{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (AFx,y:T.R'[x;y]  \mwedge{}  (\mforall{}x,y:T.    (R[x;y]  {}\mRightarrow{}  (\mneg{}R'[x;y])))))  and 
          (\mforall{}x,y,z:T.    (R[x;y]  {}\mRightarrow{}  R[y;z]  {}\mRightarrow{}  R[x;z])))
Date html generated:
2016_05_13-PM-03_51_29
Last ObjectModification:
2016_01_14-PM-06_59_46
Theory : bar-induction
Home
Index