Nuprl Lemma : band-is-inl

[a,b:Top Top]. ∀[c:Top].  (a inl outl(a)) ∧ (b inl outl(b)) supposing (a ∧b b) (inl c) ∈ (Top Top)


Proof




Definitions occuring in Statement :  band: p ∧b q outl: outl(x) uimplies: supposing a uall: [x:A]. B[x] top: Top and: P ∧ Q inl: inl x union: left right sqequal: t equal: t ∈ T
Definitions unfolded in proof :  band: p ∧b q ifthenelse: if then else fi  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B outl: outl(x) bfalse: ff sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} true: True false: False prop: subtype_rel: A ⊆B bool: 𝔹 top: Top
Lemmas referenced :  top_wf subtype_base_sq int_subtype_base equal_wf bfalse_wf subtype_rel_union unit_wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut unionElimination thin sqequalHypSubstitution applyEquality lambdaEquality natural_numberEquality unionEquality lemma_by_obid hypothesis instantiate isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp independent_pairFormation because_Cache productElimination independent_pairEquality sqequalAxiom hypothesisEquality isect_memberEquality voidEquality inlEquality

Latex:
\mforall{}[a,b:Top  +  Top].  \mforall{}[c:Top].    (a  \msim{}  inl  outl(a))  \mwedge{}  (b  \msim{}  inl  outl(b))  supposing  (a  \mwedge{}\msubb{}  b)  =  (inl  c)



Date html generated: 2016_05_13-PM-04_00_03
Last ObjectModification: 2015_12_26-AM-10_49_37

Theory : bool_1


Home Index