Nuprl Lemma : decide-lambda-if-has-value

t:Base. ((t)↓  Dec(t ~ λx.(t x)))


Proof




Definitions occuring in Statement :  has-value: (a)↓ decidable: Dec(P) all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] base: Base sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T has-value: (a)↓ uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q prop: top: Top not: ¬A false: False
Lemmas referenced :  base_wf not_zero_sqequal_one top_wf not_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction islambdaCases divergentSqle hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed hypothesisEquality sqequalRule inlEquality sqequalAxiom sqequalIntensionalEquality baseApply closedConclusion isect_memberFormation isect_memberEquality because_Cache voidElimination voidEquality inrEquality lambdaEquality independent_functionElimination

Latex:
\mforall{}t:Base.  ((t)\mdownarrow{}  {}\mRightarrow{}  Dec(t  \msim{}  \mlambda{}x.(t  x)))



Date html generated: 2016_05_13-PM-03_22_17
Last ObjectModification: 2016_01_14-PM-06_47_03

Theory : call!by!value_1


Home Index